208 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Deep learning-inspired image quality enhancement

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Enhancing image quality is a classical image processing problem that has received plenty of attention over the past several decades. A high-quality image is always expected in various vision tasks, and degradations such as noise, low-resolution, and blur are required to be removed. While the conventional techniques for this task have achieved great progress, the recent top performer, deep models, can substantially and significantly boost performance compared with conventional ones. The advantages of deep learning which enables it to achieve such success are its high representational capacity and the strong nonlinearity of the models. In this thesis, we explore the development of advanced deep models for image quality enhancement by researching several fundamental issues with different motivations. In particular, we are first motivated by a pivotal property of the human perceptual system that similar visual cues can stimulate the same neuron to induce similar neurological signals. However, image degradations can result in the fact that similar local structures in images exhibiting dissimilar observations. While the conventional neural networks do not consider this important property, we develop the (stacked) non-local auto-encoder which exploits self-similar information in natural images for enhancing the stability of signal propagation in the network. It is expected that similar structures should induce similar network propagation. This is achieved by constraining the difference between the hidden representations of non-local similar image blocks during training. By applying the proposed model to image restoration, we then develop a “collaborative stabilisation” step to further rectify forward propagation. When applying deep models to image quality enhancement tasks, we are concerned about which factor, receptive field size or model depth, is more critical. To determine the answer, we focus on the single image super-resolution task, and propose a strategy based on dilated convolution to investigate how the two factors affect the performance. Our findings from exhaustive investigations suggest that single image super-resolution is more sensitive to the changes of receptive field size than to model depth variations, and that the model depth must be congruent with the receptive field size to produce improved performance. These findings inspire us to design a shallower architecture which can save computational and memory cost while preserving comparable effectiveness with respect to a much deeper architecture. Finally, we study the general non-blind image deconvolution problem. It is observed in practice that by using existing deconvolution techniques, the residual between the sharp image and the estimation is highly dependent on both the sharp image and the noise. These techniques require the construction of different restoration models for different blur kernels and noises, inducing low computational efficiency or highly redundant model parameters. Thus, for general purposes, we propose a method by designing a very deep convolutional neural network which can handle different kernels and noises, while preserving high effectiveness and efficiency. Instead of directly outputting the deconvolved results, the model predicts the residual between a pre-deconvolved image and the corresponding sharp image, which can make the training easier and obtain restored images with suppressed artifacts

    DTA: Distribution Transform-based Attack for Query-Limited Scenario

    Full text link
    In generating adversarial examples, the conventional black-box attack methods rely on sufficient feedback from the to-be-attacked models by repeatedly querying until the attack is successful, which usually results in thousands of trials during an attack. This may be unacceptable in real applications since Machine Learning as a Service Platform (MLaaS) usually only returns the final result (i.e., hard-label) to the client and a system equipped with certain defense mechanisms could easily detect malicious queries. By contrast, a feasible way is a hard-label attack that simulates an attacked action being permitted to conduct a limited number of queries. To implement this idea, in this paper, we bypass the dependency on the to-be-attacked model and benefit from the characteristics of the distributions of adversarial examples to reformulate the attack problem in a distribution transform manner and propose a distribution transform-based attack (DTA). DTA builds a statistical mapping from the benign example to its adversarial counterparts by tackling the conditional likelihood under the hard-label black-box settings. In this way, it is no longer necessary to query the target model frequently. A well-trained DTA model can directly and efficiently generate a batch of adversarial examples for a certain input, which can be used to attack un-seen models based on the assumed transferability. Furthermore, we surprisingly find that the well-trained DTA model is not sensitive to the semantic spaces of the training dataset, meaning that the model yields acceptable attack performance on other datasets. Extensive experiments validate the effectiveness of the proposed idea and the superiority of DTA over the state-of-the-art
    corecore